ar X iv : n lin / 0 10 80 08 v 1 [ nl in . C D ] 7 A ug 2 00 1 FAST INSTABILITY INDICATOR IN FEW DIMENSIONAL DYNAMICAL SYSTEMS

نویسنده

  • PIERO CIPRIANI
چکیده

Using the tools of Differential Geometry, we define a new fast chaoticity indicator, able to detect dynamical instability of trajectories much more effectively, (i.e., quickly) than the usual tools, like Lyapunov Characteristic Numbers (LCN’s) or Poincaré Surface of Section. Moreover, at variance with other fast indicators proposed in the Literature, it gives informations about the asymptotic behaviour of trajectories, though being local in phase-space. Furthermore, it detects the chaotic or regular nature of geodesics without any reference to a given perturbation and it allows also to discriminate between different regimes (and possibly sources) of chaos in distinct regions of phase-space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : n lin / 0 30 80 06 v 1 [ nl in . C D ] 3 A ug 2 00 3 TURBULENT FIELDS AND THEIR RECURRENCES

We introduce a new variational method for finding periodic orbits of flows and spatio-temporally periodic solutions of classical field theories, a generalization of the Newton method to a flow in the space of loops. The feasibility of the method is demonstrated by its application to several dynamical systems, including the Kuramoto-Sivashinsky system.

متن کامل

ar X iv : n lin / 0 60 80 10 v 2 [ nl in . S I ] 1 8 A ug 2 00 6 Dispersionless integrable equations as coisotropic deformations . Extensions and reductions

Interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain associative algebras and other algebraic structures is discussed. It is shown that within this approach the dispersionless Hirota equations for dKP hierarchy are nothing but the associativity conditions in a certain parametrization. Several generalizations are considered. It is demonstra...

متن کامل

ar X iv : n lin / 0 51 10 57 v 1 [ nl in . C D ] 2 6 N ov 2 00 5 DISCRETE DYNAMICAL SYSTEMS EMBEDDED IN CANTOR SETS

While the notion of chaos is well established for dynamical systems on manifolds, it is not so for dynamical systems over discrete spaces with N variables, as binary neural networks and cellular automata. The main difficulty is the choice of a suitable topology to study the limit N → ∞. By embedding the discrete phase space into a Cantor set we provided a natural setting to define topological e...

متن کامل

ar X iv : n lin / 0 30 20 13 v 2 [ nl in . C D ] 1 7 O ct 2 00 3 Anomalous transport : a deterministic approach

Generic dynamical systems are characterized by the coexistence of chaotic regions and regular structures, and typical trajectories present regular segments, due to sticking to the ordered component of the phase space, separated by erratic behavior, due to wanderings in the chaotic sea. Though ubiquitous, this mixed behavior still involves hard theoretical problems, as present theories are tailo...

متن کامل

ar X iv : m at h / 06 08 72 0 v 1 [ m at h . D S ] 2 9 A ug 2 00 6 TOPOLOGICAL ENTROPY AND PARTIALLY HYPERBOLIC DIFFEOMORPHISMS

We consider partially hyperbolic diffeomorphisms on compact manifolds where the unstable and stable foliations stably carry some unique nontrivial homologies. We prove the following two results: if the center foliation is one dimensional, then the topological entropy is locally a constant; and if the center foliation is two dimensional, then the topological entropy is continuous on the set of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002